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Abstract
We consider a two-dimensional Fermi–Pasta–Ulam (FPU) lattice with
hexagonal symmetry. Using asymptotic methods based on small amplitude
ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger
equation (NLS) for the breather envelope. However, this does not support stable
soliton solutions, so we pursue a higher order analysis yielding a generalized
NLS, which includes known stabilizing terms. We present numerical results
which suggest that long-lived stationary and moving breathers are supported
by the lattice. We find breather solutions which move in an arbitrary direction,
an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic
estimates for the breather energy, and a minimum threshold energy below
which breathers cannot be found. This energy threshold is maximized for
stationary breathers and becomes vanishingly small near the boundary of the
elliptic domain where breathers attain a maximum speed. Several of the results
obtained are similar to those obtained for the square FPU lattice (Butt and
Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square
and hexagonal lattices exhibit different properties in regard to the generation
of harmonics, and the isotropy of the generalized NLS equation.

PACS numbers: 05.45.−a, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Discrete breathers are time periodic and spatially localized exact solutions of translationally
invariant nonlinear lattices. For a brief review of some general properties of breathers in
higher dimensional systems, see our earlier work [2]. In particular, it is known that while
some fundamental properties such as the existence of breathers are not affected by lattice
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dimension (see [9, 14]), other properties are affected profoundly, for instance, the energy
properties of breathers (see [8, 12, 19]). In this paper, we investigate how the symmetry of the
lattice influences the properties of discrete breathers found therein.

In Hamiltonian systems, stationary breathers occur in one-parameter families. For a
certain class of Hamiltonian systems, a critical spatial dimension dc exists such that for
systems with d � dc, there exists a positive lower bound on the energy of a breather family,
and the breather energies do not approach zero even as the amplitude tends to zero. For
lattices with dimension d < dc, there is no positive lower bound on the energy of breathers.
In other words, the energy of a family of breathers goes to zero with amplitude, and breathers
of arbitrarily small energy can be found. The critical dimension dc is typically 2. A small
amplitude expansion yields the NLS reduction to iFT +�F +κ|F |2σF = 0 which has a critical
dimension of dc = 2/σ , with blow-up in NLS occurring when κ > 0 and d > dc. For typical
lattice potentials, σ = 1 again confirming the critical dimension of dc = 2.

Marin, Eilbeck and Russell have performed extensive numerical investigations of breather
dynamics in two-dimensional lattices [15–17]. Their results suggest that moving breather
modes exist (or are at least extremely long-lived), and that the lattice exhibits a strong
directional preference whereby breathers can only move along symmetries of the lattice,
and in no other direction. Such quasi-one-dimensional behaviour is also observed in higher
dimensional lattices.

The work in this paper follows on from our earlier study [2] of breathers in a two-
dimensional lattice with square rotational symmetry; hereupon referred to as the ‘square’
lattice. This lattice has C4 symmetry, by which we mean that a rotation through any
multiple of 2π/4 = π/2 about an axis perpendicular to the lattice plane through a lattice
site maps the lattice onto itself. In [2], using the semi-discrete multiple-scale method (see
Remoissenet [18]), we determined an approximate form for (as well as the properties of)
small amplitude breathers in a two-dimensional square Fermi–Pasta–Ulam (FPU) lattice [5].
We found a third-order analysis to be inadequate, since the partial differential equation
obtained at this order describing the breather envelope exhibits blow-up. To overcome
this, we incorporated higher order effects in the model, thereby obtaining a modified partial
differential equation which includes known stabilizing terms. From this, we determined
regions of parameter space where breather solutions are expected. Numerical simulations
supported the results of our analysis, and suggested that, in contrast to the two-component
lattices studied by Marin et al [15–17] (that is, with two degrees of freedom at each lattice
site), there is no restriction upon the permitted directions of travel within the one-component
square FPU lattice. We also found asymptotic estimates for the breather energy which
confirmed the existence of a minimum threshold energy, in agreement with the work of Flach
et al [8].

In this paper, we consider a hexagonal electrical transmission lattice (HETL). This two-
dimensional network possesses C6 (or hexagonal) rotational symmetry. That is, rotation
through any multiple of the angle 2π/6 = π/3 about a lattice site maps the lattice onto
itself. The HETL is shown in figure 1, pictured from a point vertically above the plane of the
lattice. We note from figure 1 that geometrically the HETL is an arrangement of tessellating
triangles (not hexagons). Nevertheless, the arrangement in figure 1 is referred to as ‘hexagonal’
rather than ‘triangular’ since these descriptions refer to its symmetry properties and not to the
geometrical shapes which comprise the array (not all authors follow this convention). One
might expect the analysis for the hexagonal lattice to be more involved, since it is geometrically
more complicated in having more links emanating from each node. However, the hexagonal
symmetry results in greater isotropy and hence simpler equations than those obtained for the
square lattice.
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Figure 1. The 2D hexagonal electrical transmission lattice (HETL).

We derive the equations of motion and demonstrate a Hamiltonian formalism in
section 2.2. In sections 2.6 and 2.7, we present two cases for which the hexagonal FPU
lattice equations can be reduced to a two-dimensional nonlinear Schrödinger (NLS) equation
with cubic nonlinearity. We consider lattices with a symmetric interaction potential, in which
case reduction to a cubic NLS equation can be performed for moving breathers. We find an
ellipticity criterion for the wavenumbers of the carrier wave in section 2.6.1. A reduction
to the cubic NLS equation can also be carried out for lattices with an asymmetric potential,
provided we consider only stationary breathers.

As expected we find a minimum energy below which breathers cannot exist in the
hexagonal FPU lattice. We find that the energy threshold is dependent upon the wavevector of
the carrier wave. It is maximized for stationary breathers and becomes arbitrarily small near
the boundary of the elliptic domain.

The cubic NLS equation admits only unstable Townes solitons. Hence, in section 3,
we extend our asymptotic analysis to higher order and find an isotropic generalized NLS
equation which incorporates known stabilizing terms. Our analytic work is supplemented by
numerical simulations presented in section 4, which suggest that long-lived stationary and
moving breather modes are supported by the system. In section 5, we discuss the results
obtained in this paper.

2. A two-dimensional hexagonal Fermi–Pasta–Ulam lattice

2.1. Preliminaries

Before we derive the equations governing the HETL, we describe our scheme for indexing
the lattice nodes and our choice of basis vectors. We introduce a rectangular lattice with basis
vectors B = {i′, j′}, where i′ = i = [1, 0]T and j′ = [0, h]T ( j being [0, 1]T ), illustrated in
figure 2. We use only half of the (m, n) indices, namely, those for which the sum m + n is
even. We choose an origin with coordinates (0, 0); the position of the site (m, n) is mi′ + nj′.
In order for the hexagonal lattice to be regular, we specify h = √

3.
At every node of the HETL lies a nonlinear capacitor (not shown in figure 1), and between

every node and each of its six nearest neighbours is a linear inductor. An enlarged view
of the area surrounding the capacitor at (m, n) is shown in figure 3, where the capacitor is
visible. The variable Vm,n denotes the voltage across the capacitor (m, n), and Qm,n denotes
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(m,n)
(m + 2, n)

(m + 1, n + 1)(m− 1, n + 1)

(m− 2, n) i′

j′

Figure 2. Labelling of nodes in the HETL with basis B = {i′, j′}.

Vm,n

Vm+2,n

Vm+1,n+1

Im,n

Jm,n

Km,n

ei

ej

ek

Figure 3. Enlarged view of the HETL at site (m, n).

the total charge stored on the capacitor at (m, n). Also, Im,n, Jm,n and Km,n are the currents
through the inductors immediately on the right of site (m, n) in the directions ei = [2, 0]T ,
ej = [1,−√

3]T and ek = [1,
√

3]T , respectively, as illustrated in figure 3.

2.2. Derivation of model equations

To derive the equations relating current, charge and voltage in the lattice we apply Kirchoff’s
law:

Vm+2,n − Vm,n = −L
dIm,n

dt
, (2.1)

Vm+1,n−1 − Vm,n = −L
dJm,n

dt
, (2.2)

Vm+1,n+1 − Vm,n = −L
dKm,n

dt
, (2.3)

where the inductance L is constant. Conservation of charge gives

Im−2,n − Im,n + Jm−1,n+1 − Jm,n + Km−1,n−1 − Km,n = dQm,n

dt
. (2.4)

Differentiating (2.4) with respect to time, and then using (2.1)–(2.3) to find İ m−2,n, J̇ m−1,n+1

and K̇m−1,n−1, we have

L
d2Qm,n

dt2
= (Vm+2,n − 2Vm,n + Vm−2,n) + (Vm+1,n−1 − 2Vm,n + Vm−1,n+1)

+ (Vm+1,n+1 − 2Vm,n + Vm−1,n−1). (2.5)
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Equation (2.5) may be written in the abbreviated form LQ̈m,n = (
δ2
I + δ2

J + δ2
K

)
Vm,n, where

the centred second-difference operators are defined by

δ2
I Am,n = Am+2,n − 2Am,n + Am−2,n, (2.6)

δ2
J Am,n = Am+1,n−1 − 2Am,n + Am−1,n+1, (2.7)

δ2
KAm,n = Am+1,n+1 − 2Am,n + Am−1,n−1. (2.8)

Here, Am,n is an arbitrary quantity referenced by two indices; δ2
I , δ

2
J and δ2

K are centred
second-difference operators in the directions of ei, ej and ek, respectively. Since the voltage
Vm,n is known in terms of the charge, we reformulate (2.5) in terms of the single quantity
Qm,n. We invert the capacitor’s nonlinear charge–voltage relationship Q = V C(V ) (see
equations (2.9)–(2.14) of [2] for details), to obtain

V (Q) = (Q + aQ2 + bQ3 + cQ4 + dQ5)/C0, (2.9)

where C0 = C(0). Hence, the HETL equations (2.5) can be written as

d2Qm,n

dt2
= (

δ2
I + δ2

J + δ2
K

) [
Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n

]
, (2.10)

where m, n ∈ Z and, by rescaling the time variable, we set LC0 = 1 without loss of
generality. Thus we have shown that the equation governing charge in the HETL (2.10) is a
two-dimensional analogue of the Fermi–Pasta–Ulam equation

d2Qj

dt2
= W ′(Qj+1) − 2W ′(Qj ) + W ′(Qj−1), (2.11)

which is a Hamiltonian system that can be derived from both

H =
∑

j

1

2
π2

j + W(φj+1 − φj ) and H̃ =
∑

j

1

2
(Pj+1 − Pj )

2 + W(Qj), (2.12)

where Qj = φj+1 − φj .
The lattice equations (2.10) can be derived from the Hamiltonian

H̃ =
∑
m,n

1

2
(Pm+2,n − Pm,n)

2 +
1

2
(Pm+1,n−1 − Pm,n)

2 +
1

2
(Pm+1,n+1 − Pm,n)

2 + ϒ(Qm,n),

(2.13)

where ϒ(Qm,n) satisfies ϒ ′(Qm,n) = V (Qm,n) given in (2.9), hence

ϒ(Q) = 1
2Q2 + 1

3aQ3 + 1
4bQ4 + 1

5cQ5 + 1
6dQ6. (2.14)

We describe potentials which satisfy ϒ(−Q) = ϒ(Q) (that is, a = c = 0) as ‘symmetric’.
The variables Pm,n and Qm,n are conjugate momenta and displacement variables of the system,
and eliminating Pm,n from the equations

dQm,n

dt
= −(

δ2
I + δ2

J + δ2
K

)
Pm,n,

dPm,n

dt
= −ϒ ′(Qm,n) (2.15)

yields (2.10). In section 2.4, we derive expressions for the energy of breathers given the small
amplitude solutions which are obtained in the following section.



1244 I A Butt and J A D Wattis

2.3. Asymptotic analysis

We apply the method of multiple scales to determine an approximate analytic form for small
amplitude breather solutions of (2.10), with slowly varying envelope. We introduce new
variables defined by

X = εm, Y = εhn, τ = εt and T = ε2t; (2.16)

note the presence of the scaling factor h in the definition of Y. We seek solutions of (2.10) of
the form

Qm,n(t) = ε eiψF (X, Y, τ, T ) + ε2G0(X, Y, τ, T ) + ε2 eiψG1(X, Y, τ, T )

+ ε2 e2iψG2(X, Y, τ, T ) + ε3H0(X, Y, τ, T ) + ε3 eiψH1(X, Y, τ, T )

+ ε3 e2iψH2(X, Y, τ, T ) + ε3 e3iψH3(X, Y, τ, T ) + ε4 eiψI1(X, Y, τ, T )

+ ε4 e2iψI2(X, Y, τ, T ) + ε4 e3iψI3(X, Y, τ, T ) + ε4 e4iψI4(X, Y, τ, T )

+ ε5 eiψJ1(X, Y, τ, T ) + · · · + c.c., (2.17)

where the phase ψ of the carrier wave is given by km + lhn + ωt (once again noting the extra
factor h), and k = [k, l]T and ω(k) are its wavevector and temporal frequency, respectively.
We substitute the ansatz (2.17) into the lattice equations (2.10) and equate coefficients of each
harmonic frequency at each order of ε. After much simplification, this yields the following
system of equations:
O(ε eiψ):

ω2F = 4 sin2(k)F + 4 sin2

(
k + lh

2

)
F + 4 sin2

(
k − lh

2

)
F, (2.18)

O(ε2 eiψ):

ωFτ = 2 sin k[2 cos k + cos(lh)]FX + 2h cos k sin(lh)FY , (2.19)

O(ε2 e2iψ):

ω2G2 = [sin2(2k) + sin2(k + lh) + sin2(k − lh)](G2 + aF 2), (2.20)

O(ε3 eiψ):

2iωFT + Fττ = [4 cos(2k) + 2 cos k cos(lh)]FXX + 2h2 cos k cos(lh)FYY

− 4h sin k sin(lh)FXY

− 8a

[
sin2(k) + sin2

(
k + lh

2

)
+ sin2

(
k − lh

2

)]
[F(G0 + G0) + FG2]

− 12b

[
sin2(k) + sin2

(
k + lh

2

)
+ sin2

(
k − lh

2

)]
|F |2F, (2.21)

O(ε3 e3iψ):

9ω2H3 = 4

[
sin2(3k) + sin2

(
3k + 3lh

2

)
+ sin2

(
3k − 3lh

2

)]
(H3 + 2aFG2 + bF 3), (2.22)

O(ε4 e0):

G0ττ = 6G0XX + 2h2G0YY + a[6(|F |2)XX + 2h2(|F |2)YY ]. (2.23)

Though each equation plays a similar role to its counterpart in the square lattice,
equations (2.18)–(2.23) are more complicated. Equation (2.18) is the dispersion relation
for the system (2.10). Since we are interested only in solutions for which F �= 0, (2.18) yields

ω2 = 4 sin2(k) + 4 sin2

(
k + lh

2

)
+ 4 sin2

(
k − lh

2

)
, (2.24)
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which does not simplify significantly. From equation (2.19), we determine the velocity of the
travelling wave F, finding

F(X, Y, τ, T ) ≡ F(Z,W, T ), (2.25)

where Z = X − uτ and W = Y − vτ , and the horizontal and vertical velocity components
(u and v) are found to be

u = −2 sin(k)[2 cos(k) + cos(lh)]

ω
and v = −2h cos(k) sin(lh)

ω
. (2.26)

Equation (2.26) along with (2.24) enables the elimination of terms involving G1 from (2.21)
which are not shown. We denote the angle at which the envelope F propagates through the
lattice by �, which is measured from the direction of the basis vector ei to the line of travel
and hence is given by tan−1(v/u), which in turn depends upon the wavevector k. For both
the cases that we consider (namely, symmetric and asymmetric interaction potentials), we find
constraints upon the wavenumbers k and l which affect the velocity components u and v. By
taking k = π/3 and l = π/h we find u = v = 0, which corresponds to a static breather, and
by choosing k, l values which circle this point, we find breathers which can propagate in any
direction (0 � � < 2π); in other words, our analysis suggests that there is no restriction upon
the direction of travel through the lattice.

Our aim is to reduce (2.21) to a nonlinear Schrödinger (NLS) equation for F. Before
this can be done, the quantities G0 and G2 in (2.21) must be found in terms of F. As for
the square lattice, it is straightforward to determine G2 from the algebraic equation (2.20).
However, the partial differential equation (2.23) for G0 can be solved for two special cases
only, namely, symmetric potentials, in which case the reduction of (2.21) to an NLS equation
can be completed even for moving breathers, and also asymmetric potentials, provided we
confine our attention to stationary breathers. These two cases are considered in sections 2.6
and 2.7, respectively, where we also use our breather formulae to generate estimates for the
breather energy.

2.4. Asymptotic estimates for breather energy

The HETL is a lossless network, meaning that the total electrical energy is conserved. This
quantity is related to the Hamiltonian (2.13) by E = H̃ /C0 and so is given by

E =
∑
m,n

em,n =
∑
m,n

ϒ(Qm,n)

C0
+

1

2
L

(
I 2
m,n + J 2

m,n + K2
m,n

)
. (2.27)

The electrical energy em,n associated with a unit of the lattice is (see figure 3)

em,n = ϒ(Qm,n)

C0
+

1

2
L

(
I 2
m,n + J 2

m,n + K2
m,n

)
. (2.28)

To derive a leading-order estimate for the electrical energy, defined by

E0 =
∑
m,n

e(0)
m,n =

∑
m,n

Q2
m,n

2C0
+

L

2

(
I 2
m,n + J 2

m,n + K2
m,n

)
, (2.29)

we use leading-order expressions for each of the terms in the terms in the summand of (2.27).
The first term is Q2

m,n

/
(2C0); from (2.9), it follows that Vm,n ∼ Qm,n/C0, and so to

leading order (2.27) agrees with the linear approximation to the energy in the capacitor
being QV/2. To find leading-order expressions for the currents Im,n, Jm,n and Km,n, we use
equations (2.1)–(2.3), which imply
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Figure 4. Contour plot of ω(k); ω attains its maximum value of 3 at the points k1, . . . , k6, and is
minimized at the points marked ‘o’, where ω = 0.

Qm+2,n − Qm,n = −dIm,n

dt
, (2.30)

Qm+1,n−1 − Qm,n = −dJm,n

dt
, (2.31)

Qm+1,n+1 − Qm,n = −dKm,n

dt
, (2.32)

where LC0 = 1. The currents are determined by substituting the expression for the breather
Qm,n into (2.30)–(2.32) and then integrating with respect to time. We obtain leading-
order estimates for the energy of moving breathers in systems with symmetric potentials
section 2.6.2, and in section 2.7.1, the energies of stationary breathers with asymmetric
potentials.

2.5. The dispersion relation for the HETL

In this section, we analyse the dispersion relation (2.24) for the system (2.10). A contour plot
of ω against k and l is shown in figure 4. Since w is periodic in both k and l, with period
2π along the k direction, and 2π/h in the l direction, we consider only k and l such that
(k, l) ∈ T 2 = [0, 2π ] × [0, 2π/h].

The function ω is minimized, and assumes the value zero, at the centre of the circular
patterns in figure 4. The minima are located at (0, 0), (2π, 0), (2π, 2π/h), (0, 2π/h) and
(π, π/h). Plus signs (‘+’) mark the points in (k, l) space at which ω is maximized and takes
the value ω = 3. The maxima lie at the centres of the equilateral triangles, the wavevectors
corresponding to these points are denoted by k1, . . . , k6, where

k1 = [π/3, π/h]T , k2 = [2π/3, 0]T , k3 = [4π/3, 0]T ,

k4 = [5π/3, π/h]T , k5 = [4π/3, 2π/h]T , k6 = [2π/3, 2π/h]T .
(2.33)

The arrangement of the points corresponding to these wavevectors in (k, l) space reflects the
hexagonal symmetry properties of the lattice (2.10). It may be verified using (2.26) that the
velocity components u and v are both zero for each of the wavevectors {k1, . . . , k6}.

2.6. Lattices with a symmetric potential

In this section, we consider lattices with a symmetric interaction potential, where ϒ(Q) is
even and ϒ ′(Q) has odd symmetry. This corresponds to a = c = 0 in (2.10). Since there are
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no even harmonics for vibrations controlled by symmetric potentials, it follows that G0 and
G2 are both zero. In (2.21), the term Fττ is eliminated using Fττ = u2FZZ +2uvFZW +v2FWW

which is derived from (2.25). This leads to (2.21) being reduced to an NLS equation

2iωFT + [u2 − 4 cos(2k) − 2 cos k cos(lh)]FZZ + [v2 − 2h2 cos k cos(lh)]FWW

+ [2uv + 4h sin k sin(lh)]FZW + 3bω2|F |2F = 0, (2.34)

where the velocities u and v are given by (2.26). By applying an appropriate change
of variables, we remove the mixed derivative term from (2.34), and reduce the equation
to a standard form. To simplify the appearance of subsequent expressions, we denote
the coefficients of FZZ , FWW and FZW by D1 = u2 − 4 cos(2k) − 2 cos k cos(lh),D2 =
v2 −2h2 cos k cos(lh) and D3 = 2uv+4h sin k sin(lh), respectively. A suitable transformation
is thus

ξ = hZ√
D1

and η = h(2D1W − D3Z)√
D1

(
4D1D2 − D2

3

) , (2.35)

which implies (2.34) becomes

2iωFT + 3∇2F + 3bω2|F |2F = 0, (2.36)

where the differential operator ∇2F ≡ Fξξ + Fηη is isotropic in the (ξ, η) variables. An
approximation to the Townes soliton solution of (2.36) is given by equation (A.6) in the
appendix. Substituting the resulting expression for F into (2.17) yields a leading-order
expression for the breather

Qm,n(t) = 2εα cos[km + lhn + (ω + ε2λ)t]sech(βr) + O(ε3), (2.37)

where α and β are determined as described by equation (A.5) in the appendix, with
D = 3/2ω,B = 3bω/2. Further, r =

√
ξ 2 + η2 is found in terms of the physical discrete

variables m and n by inverting the transformations (2.35) and reverting back to the variables
Z and W , using

r2 = ξ 2 + η2 = 4h2ε2(D2(m − ut)2 + D1(hn − vt)2 − D3(m − ut)(hn − vt))

4D1D2 − D2
3

. (2.38)

The terms D1,D2 and D3 are known from (2.34), the velocities u and v are given by (2.26)
and ω is given in (2.24).

2.6.1. Determining the domain of ellipticity. We confine our attention to elliptic NLS
equations. We seek to determine the region D of (k, l)-parameter space (that is, the two-torus
T 2 = [(0, 2π)] × [0, 2π/h]), where the NLS equation (2.34) is elliptic. By definition, this
equation is elliptic when D2

3 < 4D1D2, where D1,D2 and D3 are given in (2.34). Whilst the
region D cannot be specified explicitly, it is simple to find numerically, and is illustrated in
figure 5. Defining the function e(k, l) = 4D1(k, l) ·D2(k, l) − D3(k, l)2, we are concerned
with the region where e(k, l) > 0. The subdomains have been labelled {D1, . . . ,D6} in
figure 5, where D = D1 ∪ · · · ∪ D6.

Again, the hexagonal symmetry properties of the HETL are reflected clearly in the
function e(k, l), which has six maxima (at which e(k, l) = 36), each lying at the centre of
one of the closed curves in figure 5. The maxima of e(k, l) coincide with the six maxima of
ω(k, l) shown in figure 4, namely, at the wavevectors {k1, . . . , k6} in T 2; e(k, l) is minimized
(e(k, l) = −48) at the six midpoints of the line segments which connect adjacent maxima.

Figure 6 shows a contour plot for the frequency ω in D1: the ellipticity constraint only
permits breathers with a relatively high frequency, that is, with ω > 2.82. This constraint in
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Figure 5. The domain D = D1 ∪ . . . ∪ D6 in which the NLS equation (2.34) is elliptic.
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Figure 6. Contour plots of ω(k, l) (left) and speed (
√

u2 + v2, right) for wavevectors k ∈ D1.
Contours are for 2.82 � ω � 3 in steps of 0.02 and speeds from zero to 0.6 in steps of 0.1. The
central point corresponds to ω = 3 and zero speed, as one considers wave vectors nearer to the
edge of D1, the frequency ω decreases and the speed increases.

turn implies that not all breather envelope velocities are attainable, only breathers with speeds
upto about 0.7 lattice sites per second are permitted; the plot on the right of figure 6 shows that
only breathers with speeds upto about 0.3 sites per second can move in any direction. There
is then an intermediate range of speeds, between 0.3 and 0.7 sites per second where breathers
can only move in certain directions; these correspond to the lattice directions. The larger the
speed, the more restricted is the direction of motion.

2.6.2. Breather energy. To calculate the leading-order energy E0 of moving breathers in
lattices with a symmetric potential we use (2.37) which we write as

Qm,n(t) ∼ 2εα cos � sech(βr), (2.39)

where � = km + lhn + �t is the phase of the carrier wave, (k, l) ∈ D,� = ω + ε2λ is
the breather frequency including the first correction term (ψ = km + lhn + ωt is only the
leading-order expression). λ parameterizes the breather amplitude, α = α(λ), β = β(λ) and
r2 are as described in equations (2.37) and (2.38).
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We now find expressions for the currents Im,n, Jm,n and Km,n: the current Im,n is obtained
by substituting the expression for Qm,n (2.39) into (2.30) and integrating with respect to time.
Owing to the complexity of the expression for r given by (2.38), the left-hand side of (2.30)
cannot be integrated with respect to time. However, the variable r varies more slowly in time
than �. Hence, integration by parts (using

∫
f ′(t)g(εt) dt = [f (t)g(εt)] − ε

∫
f (t)g′(εt) dt)

gives, to leading-order

Im,n ∼ 2εα

ω
[1 − cos(2k)] sin � sech(βr) − 2εα

ω
sin(2k) cos � sech(βr), (2.40)

where we have taken the constant of integration to be zero and � ∼ ω to leading order.
Similarly, substituting for Qm,n in equations (2.31) and (2.32) and integrating, we find

Jm,n ∼ 2εα

ω
[1 − cos(k − lh)] sin � sech(βr) − 2εα

ω
sin(k − lh) cos � sech(βr), (2.41)

Km,n ∼ 2εα

ω
[1 − cos(k + lh)] sin � sech(βr) − 2εα

ω
sin(k + lh) cos � sech(βr). (2.42)

Substituting these expressions into (2.29), we obtain

E0 ∼
∑
m,n

2ε2α2

C0
cos2 � sech2(βr)

+
2Lε2α2

ω2
sech2(βr){[(1 − cos(2k)) sin � − sin(2k) cos �]2

+ [(1 − cos(k − lh)) sin � − sin(k − lh) cos �]2

+ [(1 − cos(k + lh)) sin � − sin(k + lh) cos �]2}. (2.43)

We replace the sum by an integral since the variables Z = ε(m − ut) and W = ε(hn − vt)

vary slowly with m and n. To simplify the resulting integral, we approximate the terms
cos2 �, sin2 � and sin � cos � by their average values of 1

2 , 1
2 and 0, respectively. Hence

(2.43) becomes

E0 ∼
∑
m,n

2ε2α2

C0
sech2(βr). (2.44)

From the definition of r, (2.38), we note the function sech(βr) is not in general radially
symmetric in m, n. Hence we work in (ξ, η) space to facilitate the evaluation of the double
integral which approximates the double sum in (2.44). Evaluating the Jacobian associated
with the transformation from (m, n) to (ξ, η) coordinates, we find

E0 ∼ α2

h3C0

√
4D1D2 − D2

3

∫∫
sech(β

√
ξ 2 + η2) dξ dη. (2.45)

Evaluating this and substituting for α and β in terms of D = 3/2ω(k, l) and B = 3bω(k, l)/2
(see the appendix), we find

E0 ∼ 4π log 2(2 log 2 + 1)

3h3C0bω2(4 log 2 − 1)

√
4D1D2 − D2

3 . (2.46)

It is evident from (2.46) that the leading-order energy E0 is independent of the breather
amplitude, again confirming the existence of a minimum energy of moving breathers in the
two-dimensional HETL with symmetric potential. However, the threshold energy does depend
upon the wavenumbers k and l, hence moving breathers have a different threshold energy. A
plot of expression (2.46) is shown in figure 7. We see that E0, given by (2.46), is strictly
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Figure 7. Plot of E0(k, l) for lattices with a symmetric potential.

positive in the region of ellipticity D, and is maximized (attaining the same value) at each of
the points corresponding to wavevectors {k1, . . . , k6}, that is, at the points which correspond
to stationary breathers. The threshold energy (2.46) decays to zero towards the boundary
of the elliptic domain D (see figure 5). Hence, as for breathers in the square lattice, the energy
threshold for moving breathers is lower than that for stationary breathers. The threshold
becomes arbitrarily small at the boundary of the domain of ellipticity.

2.7. Lattices with an asymmetric potential

In this section, we consider the more general scenario where the potential ϒ ′(Q) is asymmetric.
In this case, the terms a and c in (2.9) and (2.10) are not both zero. If (2.21) is to be reduced
to an NLS equation in F, both G0 and G2 must be found in terms of F. Whilst G2 is
given by the simple algebraic equation (2.20); in order to find G0, the partial differential
equation (2.23) must be solved. We assume that G0 travels at the same velocity as F, that is,
G0(X, Y, τ, T ) ≡ G0(Z,W, T ). Eliminating G0ττ , (2.23) becomes

(u2 − 6)G0ZZ + (v2 − 2h2)G0WW + 2uvG0ZW = 6a|F |2ZZ + 2ah2|F |2WW . (2.47)

For general k and l, it is difficult to solve for G0 explicitly. However, for any of the wavevectors
{k1, . . . , k6}, the velocities u and v become zero, and so (2.47) becomes ∇2G0 = −a∇2|F |2,
where the operator ∇2, defined by ∇2

(Z,W) ≡ ∂2
Z + ∂2

W , is equivalent to ∇2
(X,Y ) ≡ ∂2

X + ∂2
Y . It

follows that G0 = −a|F |2 for each of these wavevectors.
Equations (2.18)–(2.23) are the same whichever of the wavevectors {k1, . . . , k6} is used.

Thus, (2.18) gives ω = 3, and (2.20) implies G2 = aF 2/3. Substituting these expressions for
G0 and G2 in (2.21) gives the following NLS equation for asymmetric potentials for any of
the wavevectors {k1, . . . , k6}:

2iωFT + 3∇2F + ω2
(
3b − 10

3 a2
)|F |2F = 0. (2.48)

The anomalous dispersion regime thus corresponds to b > 10a2/9. Soliton solutions are
derived in the appendix; (2.48) corresponds to D = 1/2 and B = (9b − 10a2)/2, and also
r2 = X2 + Y 2. Substituting the solution for F into the lattice ansatz (2.17) along with the
known expressions for G0 and G2 gives the following second-order formula for stationary



Discrete breathers in a two-dimensional hexagonal Fermi–Pasta–Ulam lattice 1251

breathers in lattices with an asymmetric potential:

Qm,n(t) = 2εα cos[km + lhn + (ω + ε2λ)t] sech(βr)

+ 2
3aε2α2sech2(βr){cos[2km + 2lhn + (2ω + 2ε2λ)t] − 3} + O(ε3), (2.49)

where α and β are determined in the appendix, r =
√

X2 + Y 2, and X = εm and Y = εhn in
terms of the original discrete variables m and n.

2.7.1. Breather energy. We calculate the leading-order energy E0 of stationary breathers in
lattices with an asymmetric potential. In this case, stationary breathers are given by (2.49),
from which we take only the leading-order term

Qm,n(t) ∼ 2εα cos � sech(βr), (2.50)

where � = km + lhn + �t is the phase of the carrier wave with (k, l) corresponding to one of
{k1, . . . , k6},� = ω + ε2λ is the breather frequency and w = 3.

The currents Im,n, Jm,n and Km,n are obtained by substituting (2.50) into equations (2.30)–
(2.32) and integrating with respect to time, taking the constant of integration to be zero. Thus,
to leading order, we find

Im,n ∼ 3εα

ω
sin � sech(βr) −

√
3εα

ω
cos � sech(βr), (2.51)

Jm,n ∼ 3εα

ω
sin � sech(βr) +

√
3εα

ω
cos � sech(βr), (2.52)

Km,n ∼ 3εα

ω
sin � sech(βr) +

√
3εα

ω
cos � sech(βr). (2.53)

Substituting these expressions into (2.29) gives the leading-order energy:

E0 ∼
∑
m,n

2ε2α2

C0
cos2 � sech2(βr)

+
Lh2

2ω2
ε2α2[3h2 sin2 � + 2h sin � cos � + 3 cos2 �]sech2(βr). (2.54)

We approximate the term in square brackets by taking the average values of
cos2 �, sin2 �, sin � cos � as 1

2 , 1
2 and 0, respectively.

We replace the double sum by an integral giving

E0 ∼ 2α2

hC0

∫∫
sech2(β

√
X2 + Y 2) dX dY. (2.55)

This can be evaluated to

E0 ∼ 4π log 2

hC0

α2

β2
= 8π log 2(2 log 2 + 1)

C0h(9b − 10a2)(4 log 2 − 1)
. (2.56)

Again, this estimate for energy is independent of the breather amplitude λ, demonstrating
the energy threshold properties of the two-dimensional HETL, namely, the activation energy
required to create a breather in the HETL is an O(1) quantity, irrespective of its amplitude
(2εα 	 1).
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3. Higher order asymptotic analysis

The cubic NLS equation exhibits blow-up, which cannot occur in a discrete system since
energy is conserved, and even if all the energy were localized at a single site, the amplitude
would still be finite. The two-dimensional cubic NLS equation description of the breather
envelope is lacking. Higher order dispersive and nonlinear effects play an important role in
the dynamics of such discrete systems and therefore must be incorporated. In this section,
we extend our analysis of the lattice equations (2.10) to fifth order and derive a generalized
NLS equation which includes higher order dispersive and nonlinear terms. It then remains to
determine whether this generalized NLS equation supports stable soliton solutions.

Due to the complexity of a fifth-order analysis of a general asymmetric potential, we
consider only lattices with a symmetric potential, that is, those for which a = c = 0 in (2.10).
Since no second or fourth harmonic terms are generated by the nonlinearity, we use a much
simpler ansatz, namely,

Qm,n(t) = ε eiψF (X, Y, τ, T ) + ε3 e3iψH3(X, Y, τ, T ) + · · · + c.c., (3.1)

where the phase ψ = km + lhn + ωt . In this case, in addition to equations (2.24)–(2.26),
(2.34) and (2.22), we also have

O(ε5 eiψ):

FT T = 1
6 [8 cos(2k) + cos k cos(lh)]FXXXX + h2 cos k cos(lh)FXXYY

+ 1
6h4 cos k cos(lh)FYYYY − 2

3h sin k sin(lh)FXXXY − 2
3h3 sin k sin(lh)FXYYY

+ 6b[2 cos(2k) + cos k cos(lh)](|F |2F)XX + 6bh2 cos k cos(lh)(|F |2F)YY

− 12b sin k sin(lh)[2hFFXFY + 2hFFY FX + 2hFFXFY

+ hF 2FXY + 2hFFFXY ] − 3bω2F
2
H3 − 10ω2d|F |4F. (3.2)

We simplify this by restricting attention to stationary breathers. Accordingly, only one extra
timescale, T = ε2t , is required, and we fix the wavenumbers k and l to correspond to one of
the wavevectors {k1, . . . , k6}. Hence we obtain the equations

O(ε3 eiψ):

2iωFT + 3∇2F + 3bω2|F |2F = 0, (3.3)

O(ε5 eiψ):

FT T = − 3
4∇4F − 9b∇2(|F |2F) − 10ω2d|F |4F, (3.4)

in addition to ω = 3 (from the O(ε eiψ) equation) and H3 = 0 (from O(ε3 e3iψ)). A
consequence of the hexagonal symmetry of the HETL is that all differentials on the right-hand
side of (3.4) are isotropic.

In order to obtain a generalized NLS equation, we combine the higher order
equation (3.4) with the cubic two-dimensional NLS equation (3.3). The FT T term on the
left-hand side of (3.4) is eliminated by differentiating (3.3) with respect to T and substituting
for FT T into (3.4). The resulting expression is

6iFT + 3∇2F + 27b|F |2F +
ε2

2
∇4F +

9ε2

4
(40d − 27b2)|F |4F

+
27bε2

4
∇2(|F |2F) − 9bε2

2
|F |2∇2F − 9bε2

4
F 2∇2F = 0, (3.5)

which is isotropic.
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To the best of our knowledge, this perturbed form of the NLS equation has not been studied
in the literature before, although it is similar to and slightly simpler than the corresponding
equation derived for the square lattice [2]. It is also similar to the perturbed NLS equation
considered by Davydova et al [4], namely,

iFT + D∇2F + B|F |2F + P∇4F + K|F |4F = 0, (3.6)

which is known to have stable soliton solutions. The anomalous dispersion case is BD > 0,
which in our equation (3.5) corresponds to b > 0; Davydova’s criteria for soliton existence
is PK > 0 which implies 40d > 27b2. Hence, it is in this parameter regime that we seek
breathers solutions of the HETL. The numerical results presented in section 4 show that
long-lived breather solutions are supported by the two-dimensional hexagonal FPU lattice,
suggesting that the additional perturbing terms in (3.5) do not destabilize the Townes soliton.
In fact, numerical simulations (presented in [1] but not here) of the case 40d < 27b2 show
the breather mode to be long-lived, suggesting that the terms on the second line of (3.5) are
stabilizing.

We have been unable to find a variational formulation of (3.5), and are therefore unable to
use the methods of Davydova et al [4] and Kuznetsov et al [13]. Alternative possible methods
include the modulation theory of Fibich and Papanicolaou [6, 7].

4. Numerical results

4.1. Preliminaries

Using a fourth-order Runge–Kutta scheme, we solve the equations

dQm,n

dt
= Rm,n,

dRm,n

dt
= (

δ2
I + δ2

J + δ2
K

)[
Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n

]
, (4.1)

numerically. Introducing the variable Rm,n converts the system of second-order ordinary
differential equations (2.10) to an equivalent system of first-order differential equations.

We present the results of simulations for a range of parameter values. From (2.26), the
velocity of the envelope (u, v) depends upon the wavevector k = [k, l]T , and hence we obtain
moving breathers by choosing (k, l) ∈ D. In figure 8, we show the points in D1 ⊂ D for which
we solve the lattice equations (4.1) numerically. These points correspond to the wavevectors
k1 = [π/3, π/h]T , ka = [1.4, π/h]T , kb = [0.79, 1.7324]T and kc = [0.8, 1.9987]T .
Selecting (k, l) too near to the boundary of D results in a sharply elongated breather, which are
difficult to simulate as they require a large domain. Wavevectors close to any of {k1, . . . , k6}
lead to breather modes with small speeds; a check of breather velocity would then require
a long-time simulation. In practice, we have chosen wavenumbers which do not lead to
a severely elongated breather envelope, and yet have velocities which result in observable
displacements over reasonable times. We present simulations of stationary breathers in systems
with asymmetric potentials (a, c �= 0) in section 4.8 and, in sections 4.4–4.7, simulations of
stationary and moving breathers in lattices with symmetric potentials (that is, a = c = 0
in (4.1).

4.2. Initial data and boundary conditions

We generate initial data by using the analytic expressions for breather solutions derived in
section 2.3. The formulae for Qm,n and Rm,n are found in terms of the original discrete
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Figure 9. Periodic boundary conditions for the two-dimensional HETL.

variables m and n, and then shifted horizontally and vertically so that initially the breather lies
at the centre of the lattice. We impose periodic boundary conditions for the lattice in both
horizontal and vertical directions, converting the two-dimensional arrangement illustrated in
figure 1 into a two-torus. In long-time simulations, moving breathers which approach an edge
of the lattice reappear from the opposite edge. We select the site (1, 1) to lie at the bottom
left-hand corner of the arrangement as illustrated in figure 9. Sites along the boundaries and
corners are missing between one and four neighbours. We introduce fictitious sites along the
boundaries and corners where necessary to effect periodic boundary conditions.

An illustration of a small finite lattice is shown in figure 9. The dots represent capacitors
located at lattice sites, and the lines represent some of the inter-connecting inductors. From
equations (4.1), the charge Qm,n stored on each capacitor depends upon the charge stored on
the capacitors located at its six neighbouring sites, two in each of the directions ei, ej and ek.
For the sake of clarity, the inductors connecting the capacitors at the centre of each hexagon
to its six nearest neighbours are not shown (see figure 1). It is not necessary that the lattice
should be ‘square’, meaning that the lattice could comprise M × N lattice sites, with M �= N .
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However, typically we consider M = N as in figure 9, since the numerical routines are
simpler to encode when the lattice is square, and in the examples below we consider lattices
with N � 50.

4.3. Numerical computation of breather energy

Since the HETL is lossless the total energy is conserved and can be used as a check of the
accuracy of our numerical scheme. We compute the leading-order energy by expressing
the summand e(0)

m,n (2.29) in terms of the output variables of the numerical routine, namely
Qm,n and Rm,n. The first term of e(0)

m,n is simply dependent on Qm,n. It remains to find
the currents Im,n, Jm,n and Km,n in terms of Qm,n and Rm,n. The details of this calculation
depend upon whether the interaction potential is symmetric or asymmetric. As a check of the
numerical scheme we verify that the sum is conserved and that it agrees with the asymptotic
estimate (2.46).

4.3.1. Lattices with a symmetric potential. First, we find the current Im,n in terms of Qm,n

and Rm,n. Differentiating the leading-order expression for the breather given by (2.39), we
have (retaining leading-order terms only)

Q̇m,n = Rm,n ∼ −2εαω sin � sech(βr), (4.2)

where α, β and r2 are as defined in section 2.6. Comparing the analytic expression (2.40) for
the current Im,n with the expressions for Qm,n (2.39) and Rm,n (4.2), we find

Im,n = cos(2k) − 1

ω2
Rm,n − sin(2k)

ω
Qm,n. (4.3)

Similarly, comparing expressions (2.41) and (2.42) for the currents Jm,n and Km,n, respectively,
with equations (2.39) and (4.2), we find

Jm,n = cos(k − lh) − 1

ω2
Rm,n − sin(k − lh)

ω
Qm,n, (4.4)

Km,n = cos(k + lh) − 1

ω2
Rm,n − sin(k + lh)

ω
Qm,n. (4.5)

Substituting these expressions into (2.29) gives an expression for E0 which does not simplify,
so we do not reproduce it here.

4.3.2. Lattices with an asymmetric potential. Differentiating the leading-order expression
(2.50) for the charge Qm,n in lattices with an asymmetric potential gives

Q̇m,n = Rm,n ∼ −2εαω sin � sech(βr), (4.6)

where � = πm/3 + πn + �t with � = 3. Using (2.50) and (4.6), the current Im,n given by
(2.51) can be expressed in terms of Qm,n and Rm,n as

Im,n ∼ −
√

3

2ω

[√
3Rm,n

ω
+ Qm,n

]
. (4.7)

Similarly, from (2.52)–(2.53), we have

Jm,n = Km,n ∼ −
√

3

2ω

[√
3Rm,n

ω
− Qm,n

]
. (4.8)
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These are equivalent to substituting k = π/3 and l = π/h into (4.3)–(4.5). Inserting the
expressions for Im,n, Jm,n and Km,n (4.7)–(4.8) into (2.29) yields

E0 =
∑
m,n

1

72C0

[
45Q2

m,n + 3R2
m,n − 2

√
3Qm,nRm,n

]
. (4.9)

4.3.3. Effective breather width. Numerical computation of the energy as described above
allows us to check that the total lattice energy is conserved, but does not indicate whether a
breather changes shape over time. To remedy this, we define breather widths in the m and n
directions, the sum of which we denote by Wbr, where

W2
br = r20

E0
+

r02

E0
−

(
r10

E0

)2

−
(

r01

E0

)2

, (4.10)

and r10, r01, r20 and r02 are defined by

r10 = ∑
m,n mem,n, r20 = ∑

m,n m2em,n,

r01 = ∑
m,n hnem,n, r02 = ∑

m,n h2n2em,n.

The variation in Wbr over time gives a measure of the distortion suffered by a breather.

4.4. Stationary breather in a lattice with symmetric potential

We investigate stationary breather solutions in the anomalous dispersion regime which
corresponds to b > 0 (see (3.5)). We set k = π/3 and l = π/h, corresponding to k1 in
figure 8, so that the velocities u and v are zero. Davydova’s result implies that we expect
to find stable soliton solutions when PK > 0. From (3.6), P = ε2/2, hence this inequality
implies 40d > 27b2. Hence we choose b = d = 1 as well as N = 30, ε = 0.2 and λ = 1.
Using the technique outlined in the appendix we calculate α = 1.0212, β = 1.8670. The
breather frequency is ω + ε2λ = 3.040, and therefore the period of oscillation is T = 2.0668.

As is the case for all our simulations, the initial profile of the breather is located at the
centre of the lattice, as illustrated in figure 10(a). At t = 0, the breather energy is E0 = 0.7606
and Wbr = 3.74. The asymptotic estimate for E0 given by (2.46) is 0.7523, which is only
1% different from the numerically obtained value. In figure 10(c), we show the breather
after 30 oscillations. Plots of the local energy em,n at t = 0 and t = 30T are presented in
figures 10(b) and 10(d). After thirty oscillations the breather has shed a small amount of
energy, which is manifested as small amplitude radiation throughout the lattice. Accordingly,
the breather appears a little distorted in shape compared to its initial profile. In particular,
at t = 30T , we find Wbr = 4.21. The energy of the breather at t = 30T is 0.7087, giving
�E0/E0 = −0.0682,

4.5. Breather moving along a lattice direction (� = 0◦)

In figure 11, we show a simulation of a breather moving along a lattice direction parallel to
the m-axis, that is, � = 0◦. We have chosen k = ka = [1.4, π/h]T so that u = 0.4445 and
v = 0 and thus � = tan−1(v/u) = 0◦. The breather frequency is ω = 2.9265, and hence
the period T = 2.1470. Following the calculation outlined in the appendix, the amplitude
and width parameters are α = 1.0339 and β = 1.8440; the remaining parameters being
b = 1, d = 1, N = 30, ε = 0.1 and λ = 1.

The initial profile of the breather is shown in figure 11(a), and at this time, the calculated
energy is E0 = 0.5537, whilst the asymptotic estimate (2.46) is E0 = 0.5522. It may be
observed that the breather is not radially symmetric. In fact, it is slightly elongated in the
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Figure 10. Stationary breather in a lattice with symmetric potential, see section 4.4 for details.
(a) Profile at t = 0, (b) plot of em,n, E0 = 0.7606, (c) profile at t = 30T = 62.82 and (d) plot of
em,n, E0 = 0.7087.

direction parallel to the m-axis, that is, parallel to the direction of motion. This is because the
point corresponding to the wavevector ka is near the boundary of the region of ellipticity D1

as illustrated in figure 5.
Figure 11(b) shows the breather at the later time of t = 21.58T = 46.3513, at which time

we find E0 = 0.5562. By this time, the breather has reached the right-hand edge of the lattice
and, owing to periodic boundary conditions, it re-emerges from the left-hand side as shown
in figure 11(c). The breather remains localized, without spreading, though it leaves behind a
small amount of energy in its path (visible in figures 11(b) and (c)). The computed energy
changes much less than for the previous simulation (here, �E0/E0 = 0.0287).

The velocity of the breather can be measured from a plot of the energy em,n, which is
shown in figure 11(d), viewed from directly above the plane of the lattice. From this plot,
we note that the breather has travelled 42 units at an average speed of 0.42 units per second,
which is 5.5% lower than our predicted speed of 0.4445 units per second. This is consistent
with a small amount of energy being shed as the system transforms from our approximated
initial conditions into the precise shape of the breather.

4.6. Breather moving at � = 210◦

We now show that it is possible to simulate breathers moving in directions other than a lattice
direction (that is, � �= 0◦). We set k = 0.79 and l = 1.7324, which corresponds to kb in
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Figure 11. Breather moving along a lattice direction, � = 0◦, see section 4.5 for details.
(a) Profile at t = 0, E0 = 0.5537, (b) profile at 21.58T , E0 = 0.5562, (c) profile at t = 46.59T ,
E0 = 0.5696 and (d) plot of em,n.

figure 8. It may be verified that u = −0.1999 and v = −0.1154 units per second, leading to
� = 210◦ as required. Although not a lattice vector, this direction is an axis of symmetry of
the lattice. For the wavevector kb, we have ω = 2.9675 and hence T = 2.1174, the remaining
parameters being b = 1, d = 1, N = 30, ε = 0.1 and λ = 1. The variational parameters α

and β are 1.0267 and 1.8568, respectively. The breather is shown at times t = 25, 50, 75 and
100 s in figure 12. Clearly, the breather does not deform significantly as it travels, nor does it
radiate much energy. The initial energy is computed to be E0 = 0.6306, and at t = 100, the
energy is 0.6275, a loss of 0.5%. The asymptotic estimate for the energy is E0 = 0.6184—2%
different from the numerically computed value. The motion of the breather is charted in
table 1; the final measured values for the velocities u and v give an average speed of 0.2152
units per second, 6.8% below the predicted speed of 0.2308 units per second. The angle of
travel is almost identical to the expected value of � = 210◦.

4.7. Breather moving at � = 130◦

We have presented simulations of breathers which move along axes of symmetry of the lattice.
In section 2.6.1, from the results of our asymptotic analysis, we found that breather solutions
could be constructed for any direction of travel. In this section, we test the mobility of
breathers along directions which do not correspond to axes of symmetry of the lattice. We
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Figure 12. Breather moving at � = 210◦, see section 4.6 for details. (a) Profile at t = 25,
E0 = 0.6295, (b) profile at t = 50, E0 = 0.6292, (c) profile at t = 75, E0 = 0.6235 and
(d) profile at t = 100, E0 = 0.6275.

Table 1. Summary of breather motion (� = 210◦).

Time Horizontal Vertical Average horizontal Average vertical
(s) displacement displacement velocity (units s−1) velocity (units s−1) tan � �

25 −3.5 −2 −0.14 −0.08 0.5714 209.74◦

50 −8 −4.5 −0.16 −0.09 0.5625 209.36◦

75 −13 −7.5 −0.1733 −0.1 0.5770 209.99◦

100 −18.5 −11 −0.185 −0.11 0.5946 210.74◦

have successfully propagated breathers in a range of directions, and here we show only one
such breather moving at an angle � = 130◦. We set k = 0.8 and l = 1.9987, from which
we find u = −0.2160, v = 0.2575, � = 130◦, ω = 2.9502, and the period is T = 2.1298.
The remaining parameters are b = 1, d = 1, N = 30, ε = 0.1, λ = 1, α = 1.0297 and
β = 1.8514. From figure 13, even at 120 s, the breather remains localized without suffering
appreciable degradation nor is much radiation left behind in its wake. Initially, the energy E0

is computed as 0.5977, only 0.2% different from the asymptotic estimate of E0 = 0.5965.
After 120 s, E0 is 0.5897, a change of 1.3%. To find the velocity of the breather, we have
recorded its motion and presented relevant data in table 2. From (2.26), the average speed is
predicted to be 0.3254 units per second; whilst our numerical simulation shows an average
speed of 0.3361 units per second, 3.2% lower than the expected speed. The direction of motion
of the breather is predicted accurately.
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Figure 13. Breather moving at � = 130◦, see section 4.7 for details. (a) Profile at t = 30,
E0 = 0.5961, (b) profile at t = 60, E0 = 0.5966, (c) profile at t = 90, E0 = 0.5939 and
(d) profile at t = 120, E0 = 0.5897.

Table 2. Summary of breather motion (� = 130◦) see section 4.7 for details.

Time Horizontal Vertical Average horizontal Average vertical
(s) displacement displacement velocity (units s−1) velocity (units s−1) tan � �

30 −6 7 −0.2 0.2333 −1.1667 130.60◦

60 −11 13.5 −0.1833 0.225 −1.2273 129.17◦

90 −17.5 21.5 −0.1944 0.2389 −1.2286 129.14◦

120 −25 30 −0.2083 0.25 −1.2 129.81◦

4.8. Stationary breather in a lattice with asymmetric potential

In sections 4.4–4.7, we have shown simulations of lattices with a symmetric potential, that is,
with a and c not necessarily zero in (4.1). We now consider the more general case for which
the interaction potential is asymmetric (a �= 0 �= c). To illustrate a stationary breather, we
generate initial data using (2.49), with the wavevector k = k1 = [π/3, π/h]T . As discussed in
section 2.7, anomalous dispersion corresponds to b > 10a2/9, hence we choose a = 1, b =
2.5, c = 0 and d = 1. The remaining parameter values are N = 30, ε = 0.1, λ = 1, hence
ω = 3, T = 2.0668, α = 0.8665 and β = 1.8670.
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Figure 14. Stationary breather in a lattice with an asymmetric potential, see section 4.8 for details.
(a) t = 10T = 20.69, (b) plot of em,n, E0 = 0.5453, (c) t = 30T = 41.34, (d) plot of em,n,
E0 = 0.5425, (e) t = 40T = 82.67 and (f ) plot of em,n, E0 = 0.5371.

The breather is shown in figure 14 after 10, 30 and 40 full oscillations. Initially, we find
the breather’s width and energy are Wbr = 7.46 and E0 = 0.5429, the latter being only 0.26%
different from the asymptotic estimate (2.56) of 0.5416. The accompanying plots of em,n

demonstrate clearly that the breather preserves its form and remains localized, even after 80 s.
At t = 40T , we find that Wbr = 6.83, a narrowing of the breather by 8%. Also, at t = 40T ,
the numerically computed value of the energy E0 = 0.5371, showing that the energy does not
fluctuate significantly.



1262 I A Butt and J A D Wattis

5. Discussion

In this paper, we have found approximations to discrete breathers in a two-dimensional
hexagonal FPU lattice with a scalar-valued function at each node. We have shown that the
lattice equations can be reduced to a cubic NLS equation for two special cases. In section 2.6,
we obtained moving breathers when the interaction potential is symmetric; in this case an
ellipticity criterion for the wavevector is found. In the appendix, we summarize our technique
for approximating soliton solutions of the two-dimensional NLS equation.

In section 2.7, we considered lattices with an asymmetric potential, in which case a
reduction to NLS could only be performed for stationary breathers. The theoretical methods
employed here are similar to those used on the square lattice of [2]; however, several important
differences emerge in the course of the analysis. We found that the anomalous dispersion
regime corresponds to b > 4a2/3 in the square lattice and b > 10a2/9 in the hexagonal.
Furthermore, we find that stationary breathers involve the generation of second harmonics
in the hexagonal lattice (G2 = aF 2/3), whereas they are suppressed in the square lattice
(G2 = 0). In both lattices, the quadratic nonlinearity generates a small amplitude slowly
varying mode (G0 = −a|F |2).

For symmetric interactions we found an associated ellipticity constraint: moving breathers
only occur for certain wavevectors, this means that all breathers have (i) a relatively high
frequency, and (ii) a maximum speed, which depends on the wave vector and hence on the
direction of travel, (iii) a threshold energy which also depends on wavevector and hence
is related to speed and direction of travel. We find that the threshold energy is lower for
breathers at the edge of the domain of ellipticity in wavevector space. These breathers have
lower frequencies and faster speeds. The fastest moving breathers are restricted to moving
along lattice directions.

We also presented asymptotic estimates for the breather energy in sections 2.6 and 2.7.
As expected, we found a minimum energy required to create breathers in the hexagonal lattice.
The threshold energy for moving breathers is smaller than that required for stationary breathers
and becomes vanishingly small at the boundary of the domain of ellipticity.

In section 3, we extended the small amplitude expansion to fifth order and derived a
higher order equation which more correctly describes the shape and stability properties of
the breather envelope. We obtained a generalized NLS equation (3.5) with a variety of
perturbation terms, some of which are known to be stabilizing. This equation is slightly
simpler than the corresponding equation obtained for the square lattice, namely (3.11)
of [2]. In particular, the higher order dispersive terms in (3.5) are isotropic, reflecting
the hexagonal rotational symmetry of the lattice. For stationary breathers in the case
of a symmetric potential we find that the cubic nonlinearity does not give rise to third
harmonics, that is, H3 = 0 in the hexagonal lattice, in contrast to H3 = bF 3/8 in the square
lattice.

In section 4, we illustrated these breather modes, showing that both stationary and moving
breathers are long-lived. The breather profiles change little over time, a small amount of energy
is shed due to the initial conditions being only approximate. We have successfully propagated
long-lived breathers moving in directions which are not axes of symmetry of the lattice (for
instance, � = 130◦), suggesting that there is no absolute restriction upon the direction of
travel; this is in contrast to the observations reported by Marin et al [15, 16] who could
only find breathers which travelled along axes of symmetry of the lattice. There are two
distinctions between these two cases: our results are for a scalar system whereas Marin
et al studied a mechanical (two-component) two-dimensional lattice. Also, our predicted
asymptotic calculations lead to small-amplitude breathers which are wide relative to the lattice
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spacing where it is valid to make quasi-continuum approximations; the breathers studied by
Marin et al are firmly in the discrete parameter regime.
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Appendix A. Approximation to Townes soliton

Since analytic formulae for Townes solitons are unavailable, we use the Rayleigh–Ritz method
to find time-harmonic radially symmetric solutions of

iFT + D∇2F + B|F |2F = 0, (A.1)

of the form F(x, T ) = eiλT φ(r), where r = |x| =
√

ξ 2 + η2. The function φ satisfies

−λφ + D∇2φ + Bφ3 = 0, (A.2)

where ∇2 = ∂2
ξ + ∂2

η . Equation (A.2) arises from a variational derivative of

E(φ) =
∫∫

1

2
λ|φ|2 +

1

2
D|∇φ|2 − 1

4
B|φ|4d2r. (A.3)

Using a trial solution of the form φ = α sech(βr), where α and β are undetermined parameters,
we find

E(α, β) = D(1 + 2ln2)

12
α2 − B(4ln2 − 1)

24

α4

β2
+

λln2

2

α2

β2
. (A.4)

α and β are determined by seeking stationary points of the action E , namely ∂E/∂α =
∂E/∂β = 0. Hence we find

α =
√

12λln2

B(4ln2 − 1)
, β =

√
6λln2

D(2ln2 + 1)
, (A.5)

and so our approximation to the Townes soliton solution of (A.1) is

F =
√

12λ log 2

B(4 log 2 − 1)
exp(iλT ) sech

(√
6λ log 2

D(2 log 2 + 1)

√
ξ 2 + η2

)
. (A.6)
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